1. PURPOSE	:	The purpose of this procedure is to describe how mitigates the event of emergency such as utility interruptions, interruptions in the supply chain, labour shortages, critical technologies, key production equipment failure, field returns, information and communication technology.
2. SCOPE	:	This procedure is applicable to all the processes of the organisation
3. REFERENCE	:	ISO/TS 22163:2017 Clause No.: 6.1.4, IATF 16949:2016 Clause 6.1.2.3

4. PROCEDURE:

S. No.	Activity	Doc. Ref.	Responsibility
1.	Ensure restart of the Production within the stipulated time by using alternate options as per the	Contingency Plan	
	time plan given in contingency plan		
2.	Head Plant Engineering shall ensure availability of	-do-	
	stand by equipment.		
3.	Section In-charge shall ensure stock availability of	-do-	
	spare parts required for contingency plan for key		
	equipment failure.		
4.	Corrective and preventive actions are taken for all	-do-	
	contingencies.		
5.	The Outcome and Reason for contingencies is	MRM Meeting	
	reviewed in the MRM.		

Following contingencies are identified by the organization after brainstorming or multidisciplinary team in the organization

S. No.	TYPE OF CONTINGENCIES	INCIDENCES	CONTINGENCY PLAN/ CONTROLS	RESP.
1.	Key Equipment Failure	Break Down	Contingency plan for Production continuity in the event of equipment break down	
a.	Jig & Fixture Break Down	Equipment / tool downtime from 1 Hrs 10 days	 Fixture repairing (from minor to major repairs) Inventory New Purchase 	
b.	EOT Crane	Equipment / tool downtime from 1 Hrs 10 days	RepairAlternate Option	
2.	Key IMT Equipment Failure	Test equipment/ Electrical equipment	Accept lot under deviationNew purchase	
3.	Utility Interruptions	Compressed Air Transformer Failure Bore well	 Generator Back-up is there. Spare Compressor available Air Receiver Tank available for change load on alternate compressor Changeover to another transformer Overhead, Service and Underground storage tanks Tanker supply 	
4.	Manpower	Manpower Shortages	 Contractual manpower provision is outsourced. Multiple Skill Training to existing workers Apprentice Trainees are also available as buffer. List of Agencies who provide manpower support. Succession Plan 	

5.	Strike	Dispute /	Apprentice Trainees are also
		Disagreement for	available as buffer.
		activity / execution	List of Agencies who provide
		of work between	manpower support in
		Management and	Vadodara
		employee	Negotiation between
			Management and employee
6.	Sexual harassment	Sexual Harassment	CCTV deployment
		Mis behavior with	Awareness of rules
		minority	Discipline
7.	Supply chain	Strike at Single	Stock is maintained as
	disruptions	Source Suppliers	relevant
		end.	List of Alternate suppliers
		Transportation	Alternate transportation
		Problem	facilities
8.	Field Returns	Return from	Replacement of failed part
		customer (Zonal	of the product
		Railways)	Rework at onsite
			Rework at railways
			workshops
		16	Field return issues/concerns
			are analyzed & appropriate
			actions are decided by Dy.
			CQM
9.	IT- Related	Disruption of local	Preventive Maintenance &
		IT system	Servicing
			Break Down Maintenance &
			corrective action
			AMC agreement
			Back up
			Network Diagram
10.	Leadership	Top Management	Requirement as per railway
	(Succession	Level vacancy	policy
	planning)		Additional charge of concern
			work to next level officer
		Department. Head	Other Department head
		Level vacancy	given temporary charge
			Requirement as per railway
			policy
			Functional Responsibility to
			other Department personnel

Ī	11.	Project	Stoppage of Work	Taken care by Risk and	
		Management		Opportunity management of	
				Project management	
				procedures	

PLANNING THE CONTINGENCY PLAN VALIDATION

CONTINGENCY	MONTH			
ISSUES				
	Q1	Q2	Q3	Q4
Power Failure		Х		

CONTINGENCY PLAN VALIDATION

Issue: Power Failure

Contingency plan: Use Diesel Generator Back-up

Required capacity to run the plant – 6000 KVA

Available capacity with existing DG sets – 8100 KVA (DG1-1500 KVA, DG2-2000

KVA, DG3-2300 KVA, DG4-2300 KVA)

Identify the risk related to DG sets as follows

(0)				Significance		
Are the following risks				(considering		
	yes			probability of		
Are the following risks possible?		no	Current control available	occurrence also)		
					medium	low
DG sets do not operate when	х		-AMC	х		
required.			-regular running			
			-Spares -SOP			
Fuel not available	х		-Fuel stock register		х	
			-Check for leakage			
			-SOP			

Operator not available	х		-Daily shift Rota	Х		
Because of natural disaster, DG		Х	-AMC		Х	
sets cannot be operated						
immediately						

Key take away from above Risk analysis – nil

Procedure for Validation-

- Run all the DG sets in suitable combination to suit plant operation for minimum 24 hours (It is part of SOP),
- 2. note down TGR/TGW,
- 3. Initiate actions to fix the issue,
- 4. Re validate,
- 5. Initiate actions to fix the issues,
- 6. Revalidate (till no new issue surfaces),
- 7. standardize the findings

	TGR/TGW	Actions	Actions taken	Re validation	
		planned to fix		required?	
	4	the issue			
	Could not run	Reliable for 4	Organization overhauled	no	
A V	for more than 5 hours as it	hours only; plan for CAPEX,	the DG set in place of new one, it cost 5,000 (cost for new DG set is 25,000), it is validated, it		
DG1- 1500 KVA	was incredibly old - 10 years	Use only when any one of DG- 2, DG-3, DG-4 is not working.	was run for 48 hours nonstop, then after a brief preventive maintenance again run for 48 hours. However, power cost is 1.25 times more than DG-2, DG-3, DG-4		

	3 times	Repair	Supplier penalized,	
		immediately	some major	no
	tripped	ediatery	manufacturing fault in	
		2-year-old, still	the supplied DG Set,	
DG2- 2000 KVA		in warranty	replaced the DG set,	
) O			now working	
700			satisfactorily for 24	
.75			hours running,	
۵			PM plan for all the 4 DG	
			set reviewed and linked	
			with maintenance	
			department's employee	
			bonus	
ĕ	Run smoothly	Maintain	PM plan adherence	no
DG3- 2300 KVA			ensured	
230				
<u>6</u>				
DG				
	Pump	Provide spare	Fuel pump of same	20
	supplying fuel	pumps for DG-	specification provided	no
		4;	on all 4 DG sets, and one	
A A	to DG set got	See if all DG	kept in store as spare.	
) V	mal function	have same		
230	after 2,5	fuel pump, if	Dg set is running 24	
DG4- 2300 KVA		not	hours satisfactorily	
90	hours; no	standardize it		
	spare pump	Staridardize it		
		Provide one		
	/	spare pump in		
		store		

KEY LEARNINGS FROM THE VALIDATION-

REQUIRED CAPACITY - 6000 KVA,

EXTECTED AVAILABLE CAPACITY - 8100 KVA.

ACTUALLY, AVAILABLE CAPACITY - 2300 KVA, 1500 KVA FOR 4 HOURS,

CONTIGENCY PLAN FAILED!

STANDARDISATION AFTER REVALIDATION

SOP revised to include better control on outsource process i.e. AMC,

Parts list revised to include fuel pump specifications; previous fuel pump master

deleted from the system to prevent any error.

In PM plan fuel pump maintenance as well fuel gauge calibration initiated.

Risk registers revisited, modified as follows, shown in Italic

Are the following risks			Current control available	Significa	ance	
possible?				(consid	ering	
				probab	ility of	
	Ves	u	G	occurre	nce als	o)
				high	medium	low
DG sets do not operate when	Х		-AMC	Х		
required.			-regular running			
			-Spares			
	7		-SOP			
Fuel not available	х		-Fuel stock register		х	
			-Check for leakage			
3,0			-SOP			
Operator not available	х		-Daily shift Rota	х		
Because of natural disaster, DG		Х	-AMC		х	
sets cannot be operated						
immediately						
Issue related to Fuel pump	х		-Standardization of fuel pump,		х	
			-Spares			

KEY LEARNINGS FROM THE RE VALIDATION
REQUIRED CAPACITY - 6000 KVA,

EXTECTED AVAILABLE CAPACITY - 8100 KVA (BEFORE 1ST VALIDATION)

CALCULATED CAPACITY - 2300 KVA, 1500 KVA FOR 4 HOURS (AFTER 1ST VALIDATION),

NOW ACTUALLY AVAILABLE CAPACITY – 6600 KVA WITH OPTIMUM COST AND ADDITIONAL CAPACITY OF 1500 KVA AVAILABLE WITH 1.25X COST

CONTIGENCY PLAN SUCCESSFUL!

H K AGRAWAL